skip to main content


Search for: All records

Creators/Authors contains: "Xie, Keping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Free, publicly-accessible full text available August 1, 2024
  3. A bstract The future Electron-Ion Collider (EIC) at Brookhaven National Laboratory, along with its primary capacity to elucidate the nuclear structure, will offer new opportunities to probe physics beyond the Standard Model coupled to the electroweak sector. Among the best motivated examples of such new physics are new heavy neutral leptons (HNLs), which are likely to play a key role in neutrino mass generation and lepton number violation. We study the capability of the EIC to search for HNLs, which can be produced in electron- proton collisions through charged current interactions as a consequence of their mixing with light neutrinos. We find that, with the EIC design energy and integrated luminosity, one is able to probe HNLs in the mass range of 1 – 100 GeV with mixing angles down to the order of 10 − 4 − 10 − 3 through the prompt decay signatures, and in the mass range of 1 10 GeV with | U e | 2 ~ 10 − 6 – 10 − 4 via the displaced decay signatures. We also consider the invisible mode where an HNL is undetected or decaying to dark sector particles. One could potentially probe heavy HNLs for mixing angles in the window 10 − 3 – 10 − 2 , provided SM background systematics can be brought under control. These searches are complementary to other probes of HNLs, such as neutrino-less double- β decay, meson decay, fixed-target, and high-energy collider experiments. 
    more » « less
  4. Free, publicly-accessible full text available August 1, 2024
  5. Abstract

    We study the dependence of the transverse mass distribution of charged leptons and the missing energy on parton distributions (PDFs) adapted toWboson mass measurements at the CDF and ATLAS experiments. We compare the shape variations of the distribution induced by different PDFs and find that the spread of predictions from different PDF sets can be significantly larger than the PDF uncertainty predicted by a specific PDF set. We suggest analyzing the experimental data using up-to-date PDFs to gain a better understanding of the PDF uncertainties inWboson mass measurements. We also perform a series of Lagrange multiplier scans to identify the constraints on the transverse mass distribution imposed by individual data sets in the CT18 global analysis. In the case of the CDF measurement, the distribution is mostly sensitive tod-quark PDFs in the intermediatexregion, which are largely constrained by DIS and Drell-Yan data on deuteron targets and Tevatron lepton charge asymmetry data.

     
    more » « less
  6. We discuss the impact of heavy-flavor production measurements in semi-inclusive deep inelastic scattering at HERA on the CTEQ-TEA PDFs.In particular, we study the impact of the latest charm and bottom production measurements from the H1 and ZEUS collaborations on the gluon, and the interplay of these measurements with the data ensemble of the recent CT18 global QCD analysis. 
    more » « less
  7. Sissa (Ed.)
    We discuss recent CTEQ-TEA group activities after the publication of the CT18 global analysis of parton distribution functions (PDFs) in the proton. In particular, we discuss a new calculation for the photon content in the proton, termed as CT18lux and CT18qed PDFs, and the impact of novel charm- and bottom-quark production cross section measurements at HERA on the CT18 global analysis. 
    more » « less
  8. A bstract We explore the sensitivity of directly testing the muon-Higgs coupling at a high-energy muon collider. This is strongly motivated if there exists new physics that is not aligned with the Standard Model Yukawa interactions which are responsible for the fermion mass generation. We illustrate a few such examples for physics beyond the Standard Model. With the accidentally small value of the muon Yukawa coupling and its subtle role in the high-energy production of multiple (vector and Higgs) bosons, we show that it is possible to measure the muon-Higgs coupling to an accuracy of ten percent for a 10 TeV muon collider and a few percent for a 30 TeV machine by utilizing the three boson production, potentially sensitive to a new physics scale about Λ ∼ 30 − 100 TeV. 
    more » « less